Abstract
A mathematical model of cell cycle progression is presented, which integrates recent biochemical information on the interaction of the maturation promotion factor (MPF) and cyclin. The model retrieves the dynamics observed in early embryos and explains how multiple cycles of MPF activity can be produced and how the internal clock that determines durations and number of cycles can be adjusted by modulating the rate of change in MPF or cyclin concentrations. Experiments are suggested for verifying the role of MPF activity in determining the length of the somatic cell cycle.