Instability and Morphology of Thin Liquid Films on Chemically Heterogeneous Substrates

Abstract
A new mechanism for the surface instability and dewetting of thin films on chemically heterogeneous substrates is identified and simulated. The time scale for instability varies inversely with the potential difference due to the heterogeneity. Heterogeneities can even destabilize spinodally stable films, reduce the time of rupture substantially for thicker films, and produce complex and locally ordered morphological features (e.g., ripples and castle-moat structures, lack of undulations before hole formation) that are not predicted by the spinodal mechanism.