Pattern Formation in Unstable Thin Liquid Films

Abstract
The problem of spontaneous evolution of morphological patterns in thin ( <100nm) unstable liquid films on homogeneous solid substrates is resolved based on a 3D nonlinear equation of motion. Initially, a small amplitude bicontinuous structure emerges, which either grows and fragments into a collection of microdroplets (for relatively thinner films), or leads directly to isolated circular holes (for thicker films) which dewet the surface. The characteristics of a pattern, and its pathway of evolution, thus depend crucially on the form of the intermolecular potential in an extended neighborhood of the initial thickness. The linear and 2D nonlinear analyses used hitherto fail completely in prediction of morphological patterns, but can predict their length scales rather well.