Establishment of an in vitro culture system to study the developmental biology of Onchocerca volvulus with implications for anti-Onchocerca drug discovery and screening

Abstract
Infections with Onchocerca volvulus nematodes remain a threat in Sub-Saharan Africa after three decades of ivermectin mass drug administration. Despite this effort, there is still an urgent need for understanding the parasite biology especially the mating behaviour and nodule formation as well as the development of more potent drugs that can clear the developmental (L3, L4, L5) and adult stages of the parasite and inhibit parasite reproduction and behaviour. Prior to culture, freshly harvested O. volvulus L3 larvae from dissected Simulium damnosum flies were purified by centrifugation using a 30% Percoll solution to eliminate fly tissue debris and contaminants. Parasites were cultured in both cell-free and cell-based co-culture systems and monitored daily by microscopic visual inspection. Exhausted culture medium was replenished every 2–3 days. The cell-free culture system (DMEM supplemented with 10% NCS) supported the viability and motility of O. volvulus larvae for up to 84 days, while the co-culture system (DMEM supplemented with 10% FBS and seeded on LLC-MK2 feeder cells) extended worm survival for up to 315 days. Co-culture systems alone promoted two consecutive parasite moults (L3 to L4 and L4 to L5) with highest moulting rates (69.2±30%) observed in DMEM supplemented with 10% FBS and seeded on LLC-MK2 feeder cells, while no moult was observed in DMEM supplemented with 10% NCS and seeded on LEC feeder cells. In DMEM supplemented with 10% FBS and seeded on LLC-MK2 feeder cells, O. volvulus adult male worms attached to the vulva region of adult female worms and may have mated in vitro. Apparent early initiation of nodulogenesis was observed in both DMEM supplemented with 10% FBS and seeded on LLC-MK2 and DMEM supplemented with 10% NCS and seeded on LLC-MK2 systems. The present study describes an in vitro system in which O. volvulus L3 larvae can be maintained in culture leading to the development of adult stages. Thus, this in vitro system may provide a platform to investigate mating behaviour and early stage of nodulogenesis of O. volvulus adult worms that can be used as additional targets for macrofilaricidal drug screening. River blindness affects people living in mostly remote and underserved rural communities in some of the poorest areas of the world. Although significant efforts have been achieved towards the reduction of disease morbidity, onchocerciasis still affects millions of people in Sub-Saharan Africa. The current control strategy is the annual mass administration of ivermectin which has accumulated several drawbacks over time, especially the action of the drug is solely microfilaricidal, very long treatment period (15–17 years) and reports of ivermectin losing its efficacy; thus, raising the urgent need for new adulticidal compounds. Our study has established an in vitro platform capable of supporting the growth and development of Onchocerca volvulus for up to 315 days, enabling the observation of parasite developmental processes: moulting (from the infective L3 stage to adults), increase in morphometry, the attachment of adult male and female worms and the potential initiation of nodulogenesis. Moreover, the platform might provide more insight into O. volvulus adult worms behavioural pattern in vitro. Also, our findings provide more avenues for mass production of different parasite stages, the investigation of parasite developmental biology and the identification of targets for drug discovery against different developmental stages of this filarial parasite within 315 days.
Funding Information
  • DFG (HO 2009/10-1; HO2009/14-1; HU2144/3-1)
  • DFG (HO 2009/10-1; HO2009/14-1; HU2144/3-1)
  • DFG (HO 2009/10-1; HO2009/14-1; HU2144/3-1)
  • DFG (HO 2009/10-1; HO2009/14-1; HU2144/3-1)
  • Federal Ministry of Education and Research
  • Federal Ministry of Education and Research
  • Horizon 2020 Framework Programme
  • Horizon 2020 Framework Programme
  • Horizon 2020 Framework Programme