A fully transparent, flexible PEDOT:PSS–ITO–Ag–ITO based microelectrode array for ECoG recording

Abstract
Integrative neural interfaces combining neurophysiology and optogenetics with neural imaging provide numerous opportunities for neuroscientists to study the structure and function of neural circuits in the brain. Such a comprehensive interface demands miniature electrode arrays with high transparency, mechanical flexibility, electrical conductivity, and biocompatibility. Conventional transparent microelectrodes made of a single material, such as indium tin oxide (ITO), ultrathin metals, graphene and poly-(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS), hardly possess the desired combination of those properties. Herein, ultra-flexible, highly conductive and fully transparent microscale electrocorticogram (μECoG) electrode arrays made of a PEDOT:PSS–ITO–Ag–ITO assembly are constructed on thin parylene C films. The PEDOT:PSS–ITO–Ag–ITO assembly achieves a maximum ∼14% enhancement in light transmission over a broad spectrum (350–650 nm), a significant reduction in electrochemical impedance by 91.25%, and an increase in charge storage capacitance by 1229.78 μC cm−2. Peeling, bending, and Young's modulus tests verify the enhanced mechanical flexibility and robustness of the multilayer assembly. The μECoG electrodes enable electrical recordings with high signal-to-noise ratios (SNRs) (∼35–36 dB) under different color photostimulations, suggesting that the electrodes are resilient to photon-induced artifacts. In vivo animal experiments confirm that our array can successfully record light-evoked ECoG oscillations from the primary visual cortex (V1) of an anesthetized rat.
Funding Information
  • Division of Electrical, Communications and Cyber Systems (1923187)
  • Division of Civil, Mechanical and Manufacturing Innovation (1724941)
  • Michigan State University