Micro-ultracapacitors with highly doped silicon nanowires electrodes

Abstract
Highly n-doped silicon nanowires (SiNWs) with several lengths have been deposited via chemical vapor deposition on silicon substrate. These nanostructured silicon substrates have been used as electrodes to build symmetrical micro-ultracapacitors. These devices show a quasi-ideal capacitive behavior in organic electrolyte (1 M NEt4BF4 in propylene carbonate). Their capacitance increases with the length of SiNWs on the electrode and has been improved up to 10 μFcm−2 by using 20 μm SiNWs, i.e., ≈10-fold bulk silicon capacitance. This device exhibits promising galvanostatic charge/discharge cycling stability with a maximum power density of 1.4 mW cm−2.