An Initial Step of GAS-Containing Autophagosome-Like Vacuoles Formation Requires Rab7

Abstract
Group A streptococcus (GAS; Streptococcus pyogenes) is a common pathogen that invades non-phagocytic human cells via endocytosis. Once taken up by cells, it escapes from the endocytic pathway to the cytoplasm, but here it is contained within a membrane-bound structure termed GAS-containing autophagosome-like vacuoles (GcAVs). The autophagosome marker GFP-LC3 associates with GcAVs, and other components of the autophagosomal pathway are involved in GcAV formation. However, the mechanistic relationship between GcAV and canonical autophagy is largely unknown. Here, we morphologically analyzed GcAV formation in detail. Initially, a small, GFP-LC3-positive GcAV sequesters each streptococcal chain, and these then coalesce into a single, large GcAV. Expression of a dominant-negative form of Rab7 or RNAi-mediated knockdown of Rab7 prevented the initial formation of small GcAV structures. Our results demonstrate that mechanisms of GcAV formation includes not only the common machinery of autophagy, but also Rab7 as an additional component, which is dispensable in canonical autophagosome formation. Autophagy has become one of the leading edge subjects in science. Autophagy occurs when a cell eats some of its cellular components and digests them. These cellular components may include cytosol and organelles as well as bacteria that has invaded the cell. Thus, autophagy plays an important role in killing pathogens. Here, we introduce an anti-bacterial autophagy called xenophagy. Group A Streptococcus (GAS) enters HeLa cells and escapes from the endosome into the cytoplasm for its growth. However, autophagy kicks in and traps GAS, thus preventing its survival path. Detailed morphological observation of this process reveals several specific features which were not found in canonical autophagy. These results provide key information about not only anti-bacterial autophagy, but also canonical autophagy.