Collagenous Extracellular Matrix of Cartilage Submitted to Mechanical Forces Studied by Second Harmonic Generation Microscopy

Abstract
International audienceOsteoarthritis is a degenerative pathology leading to degradation of the extracellular matrix (ECM). Similar effects can be visualized when applying mechanical or biochemical constraints on cartilaginous tissue. Here, we characterized modification of the ECM appearing under mechanical compression and/or biochemical action (hypoxia environment, nitric oxide and collagenase action). In recent decades, multiphoton microscopy has proved its interest for observing living, thick and opaque biological tissues. Thus, the main components of the cartilaginous ECM can be observed without fluorescent labeling. In particular, the collagen network emits strong second harmonic generation (SHG) signal which could be collected at half of the excitation wavelength. Combining autofluorescence and SHG signal detection enables to obtain complementary structural information. Here, we proved that multiphoton microscopy represents an appropriate tool for ex vitro cartilage imaging. First, we showed that SHG signal specifically comes from collagen (collagenase digestion). Further, we verified that the use of an appropriate band-pass filter enables to reject the autofluorescence from the ECM. Once this specificity was shown, we followed modification of the cartilage ECM submitted to mechanical or biochemical constraints (compression, enzymatic digestion). By performing textural analysis of SHG images (Haralick's method), we showed the restructuration of the collagen network according to constraints

This publication has 32 references indexed in Scilit: