An Efficient a Posteriori Treatment for Dispersion Interaction in Density-Functional-Based Tight Binding

Abstract
The performance of density functional theory (DFT) (VWN-LDA, PBE-GGA, and B3LYP hybrid functionals), density-functional-based tight binding (DFTB), and ab initio methods [HF, MP2, CCSD, and CCSD(T)] for the treatment of London dispersion is investigated. Although highly correlated ab initio methods are capable of describing this phenomenon, if they are used with rather large basis sets, DFT methods are found to be inadequate for the description of H2/PAH (polycyclic aromatic hydrocarbon) interactions. As an alternative approach, an a posteriori addition of a van der Waals term to DFTB is proposed. This method provides results for H2/PAH interactions in close agreement with MP2 and higher-level ab initio methods. Bulk properties of graphite also compare well with the experimental data.