An Integrated Methodological Approach to the Computer-Assisted Gas Chromatographic Screening of Basic Drugs in Biological Fluids Using Nitrogen Selective Detection

Abstract
This paper presents the methodological aspects of a computerized system for the gas-chromatographic screening and primary identification of central nervous system stimulants and narcotic analgesics (including some of their respective metabolites) extracted from urine. The operating conditions of a selective nitrogen detector for optimized analytical functions are discussed, particularly the effect of carrier and fuel gas on the detector's sensitivity to nitrogen-containing molecules and discriminating performance toward biological matrix interferences. Application of simple extraction techniques, combined with rapid derivatization procedures, computer data acquisition, and reduction of chromatographic data are presented. Results show that this system approach allows for the screening of several drugs and their metabolites in a short amount of time. The reliability and stability of the system have been tested by analyzing several thousand samples for doping control at major international sporting events and for monitoring drug intake in addicts participating in a rehabilitation program. Results indicate that these techniques can be used and adapted to many different analytical toxicology situations.