Comparisons of the Intraocular Tissue Distribution, Pharmacokinetics, and Safety of 125I-Labeled Full-Length and Fab Antibodies in Rhesus Monkeys Following Intravitreal Administration

Abstract
Access of recombinant proteins to the retina following intravitreal administration is poorly understood. A study was conducted in male Rhesus monkeys (15 to 28 mo of age; 2.8-3.3 kg) in order to compare the intraocular tissue distribution, pharmacokinetics, and safety of 125Iodine (I)-labeled full-length humanized rhuMAb HER2 antibody (148 kD) and of 125I-labeled humanized rhuMAb vascular endothelial growth factor Fab antibody (48.3 kD) following bilateral bolus intravitreal injection on day 0 (5 animals/group). The dose administered to each eye was 25 μg (9-10 μCi) in 50 μl. Animals were euthanatized on day 0 (1 hr postdose) and on days 1, 4, 7, and 14. Safety assessment included direct ophthalmoscopy, intraocular pressure measurements, clinical observations, body weight, and hematology and clinical chemistry panels. Blood and vitreous samples were collected daily (blood only) and at necropsy for pharmacokinetics and analysis for antibodies to the test materials; the ocular tissue distribution of the test material was evaluated by microautoradiography. All animals completed the study. Microautoradiography demonstrated that the full-length antibody did not penetrate the inner limiting membrane of the retina at any of the time points examined. In contrast, the Fab antibody fragment diffused through the neural retina to the retinal pigment epithelial layer at the 1-hr time point and persisted in this location for up to 7 days. Systemic exposure to test material was low but variable: the highest plasma concentration of the full-length antibody was 20.3 ng/ml, whereas plasma concentrations for the Fab antibody remained below the limit of quantitation (i.e., <7.8 ng/ml). An immune response to the test material was not evident in either treatment group. The half-life in vitreous was 5.6 days for the full-length antibody and 3.2 days for the Fab antibody. The shorter intravitreal half-life of the Fab antibody is related to its smaller size and its significant diffusion through the retinal layers. The differences in pharmacokinetics and tissue distribution that are noted between the full-length and Fab antibodies in this study identify potential therapeutic approaches that may be exploited in specific disease conditions.