Abstract
Imaging the dopaminergic neurotransmitter system with positron emission tomography (PET) or single photon emission tomography (SPECT) is a powerful tool for the diagnosis of Parkinson's disease (PD). Previous studies have indicated that human observers have a diagnostic accuracy similar to conventional ROI analysis of SPECT imaging data. Consequently, it has been hypothesized that an artificial neural network (ANN), which can mimic the pattern recognition skills of human observers, may provide similar results. A set of patients with PD, and normal healthy control subjects, were studied using the dopamine transporter tracer [(99m)Tc]TRODAT-1 and SPECT. The sample was comprised of 81 patients (mean age +/- SD: 63.4 +/- 10.4 years; age range: 39.0-84.2 years) and 94 healthy controls (mean age +/- SD: 61.8 +/- 11.0 years; age range: 40.9-83.3 years). The images were processed to extract the striatum and the striatal pixel values were used as inputs to a three-layer ANN. The same set of data was used to both train and test the ANN, in a 'leave one out' procedure. The diagnostic accuracy of the ANN was higher than any previous analysis method applied to the same data (94.4% total accuracy, 97.5% specificity and 91.4% sensitivity). However, it should be stressed that, as with all applications of an ANN, it was difficult to interpret precisely what triggers in the images were being detected by the network.

This publication has 21 references indexed in Scilit: