Review of Radiation Damage to Silicon Solar Cells

Abstract
This paper reviews a large number of silicon solar cell irradiation experiments performed over the last 10 years, including 1-MeV and energy spectrum electron studies, and low-(100-keV) and high-energy (up to 155-MeV) proton studies on bare and covered silicon solar cells of several types. The results of satellite flight experiments on individual solar cells are also presented, as well as data from complete solar arrays and data on the new high-efficiency solar cells. Experimental evidence indicates that the percentage of degradation is smaller in thin solar cells than in thick ones, and that cells with high resistivity ( 10 Ω·cm) degrade less than cells with lower resistivity (1 Ω·cm). It is shown that high-efficiency silicon solar cells produced at COMSAT Laboratories and pilot production groups of these cells retain most of their increased power output under irradiation. It is emphasized that all surfaces and edges of the solar cells must be completely shielded from the large flux protons in the space environment. Insufficiencies in the published data are noted in certain areas, and recommendations for additional research are presented. Finally, an extensive bibliography is included.

This publication has 18 references indexed in Scilit: