Highly Linear mm-Wave CMOS Power Amplifier

Abstract
A Ka-band highly linear power amplifier (PA) is implemented in 28-nm bulk CMOS technology. Using a deep class-AB PA topology with appropriate harmonic control circuit, highly linear and efficient PAs are designed at millimeter-wave band. This PA architecture provides a linear PA operation close to the saturated power. Also elaborated harmonic tuning and neutralization techniques are used to further improve the transistor gain and stability. A two-stack PA is designed for higher gain and output power than a common source (CS) PA. Additionally, average power tracking (APT) is applied to further reduce the power consumption at a low power operation and, hence, extend battery life. Both the PAs are tested with two different signals at 28.5 GHz; they are fully loaded long-term evolution (LTE) signal with 16-quadrature amplitude modulation (QAM), a 7.5-dB peak-to-average power ratio (PAPR), and a 20-MHz bandwidth (BW), and a wireless LAN (WLAN) signal with 64-QAM, a 10.8-dB PAPR, and an 80-MHz BW. The CS/two-stack PAs achieve power-added efficiency (PAE) of 27%/25%, error vector magnitude (EVM) of 5.17%/3.19%, and adjacent channel leakage ratio (ACLR $_{\mathrm{ E-UTRA}}$ ) of −33/−33 dBc, respectively, with an average output power of 11/14.6 dBm for the LTE signal. For the WLAN signal, the CS/2-stack PAs achieve the PAE of 16.5%/17.3%, and an EVM of 4.27%/4.21%, respectively, at an average output power of 6.8/11 dBm.

This publication has 28 references indexed in Scilit: