Oscillatory Neurocomputers with Dynamic Connectivity

Abstract
Our study of thalamo-cortical systems suggests a new architecture for a neurocomputer that consists of oscillators having different frequencies and that are connected weakly via a common medium forced by an external input. Even though such oscillators are all interconnected homogeneously, the external input imposes a dynamic connectivity. We use Kuramoto's model to illustrate the idea and to prove that such a neurocomputer has oscillatory associative properties. Then we discuss a general case. The advantage of such a neurocomputer is that it can be built using voltage controlled oscillators, optical oscillators, lasers, microelectromechanical systems, Josephson junctions, macromolecules, or oscillators of other kinds. (Provisional patent 60/108,353)