Increased invasiveness of MMP-9-deficient tumors in two mouse models of neuroendocrine tumorigenesis

Abstract
Despite their apparent success in pre-clinical trials, metalloproteinase (MMP) inhibitors proved to be inefficacious in clinical settings. In an effort to understand the underlying causes of this unanticipated outcome, we modeled the consequences of long-term MMP inhibition by removing one of the major players in tumorigenesis, MMP9, in two complimentary mouse models of pancreatic neuroendocrine carcinogenesis: Myc;BclXl and RIP1-Tag2. By employing gel zymography and a fluoregenic solution assay, we first established that MMP9 is expressed and activated in Myc;BclXl tumors in an interleukin-1β-dependent manner. The genetic deletion of MMP9 in Myc;BclXl mice impairs tumor angiogenesis and growth analogous to its absence in the RIP1-Tag2 model. Notably, tumors that developed in the context of MMP9-deficient backgrounds in both models were markedly more invasive than their typical wild-type counterparts, and expressed elevated levels of pro-invasive cysteine cathepsin B. The increased invasion of MMP9-deficient tumors was associated with a switch in the spectrum of inflammatory cells at the tumor margins, involving homing of previously undetected, cathepsin-B expressing CD11b;Gr1-positive cells to the invasive fronts. Thus, plasticity in the tumor inflammatory compartment is partially responsible for changes in the expression pattern of tumor-associated proteases, and may contribute to the compensatory effects observed on MMP inhibition, hence accounting for the heightened tumor progression described in late stage clinical trials.

This publication has 71 references indexed in Scilit: