Parametric Shape Modeling Using Deformable Superellipses for Prostate Segmentation

Abstract
Automatic prostate segmentation in ultrasound images is a challenging task due to speckle noise, missing boundary segments, and complex prostate anatomy. One popular approach has been the use of deformable models. For such techniques, prior knowledge of the prostate shape plays an important role in automating model initialization and constraining model evolution. In this paper, we have modeled the prostate shape using deformable superellipses. This model was fitted to 594 manual prostate contours outlined by five experts. We found that the superellipse with simple parametric deformations can efficiently model the prostate shape with the Hausdorff distance error (model versus manual outline) of 1.32/spl plusmn/0.62 mm and mean absolute distance error of 0.54/spl plusmn/0.20 mm. The variability between the manual outlinings and their corresponding fitted deformable superellipses was significantly less than the variability between human experts with p-value being less than 0.0001. Based on this deformable superellipse model, we have developed an efficient and robust Bayesian segmentation algorithm. This algorithm was applied to 125 prostate ultrasound images collected from 16 patients. The mean error between the computer-generated boundaries and the manual outlinings was 1.36/spl plusmn/0.58 mm, which is significantly less than the manual interobserver distances. The algorithm was also shown to be fairly insensitive to the choice of the initial curve.

This publication has 45 references indexed in Scilit: