Abstract
A new recipe for surface-enhanced infrared absorption (SEIRA) active island Au films with improved adhesion in aqueous solution, low resistivity, and enhancement of the infrared (IR) absorption of about 300 was developed. The Au films prepared were utilized in studies of the ionization of self-assembled monolayers of 11-mercaptoundecanoic acid in Na2SO4 aqueous solutions by attenuated total reflection surface-enhanced infrared absorption (ATR-SEIRA) spectroscopy. It was found that the carboxyl end groups of the self-assembled monolayer turn into carboxylate anions on going from anodic to cathodic potentials or from acidic to alkaline pH. The water molecules close to the self-assembled monolayer in acidic solutions or at anodic potentials are preferentially aligned with their dipole moments parallel to the interface. This type of alignment can be ascribed to the dipole–dipole interaction between the carboxyl groups and the water molecules. On the other hand, in alkaline solutions or at cathodic potentials the structure of water close to the self-assembled monolayer is essentially bulk-like, with randomly oriented water molecules. This observation suggests that in alkaline solutions or at cathodic potentials the charge of the carboxylate anions is almost completely compensated for by strongly adsorbed counter cations. As a result, the electric field close to the surface of the ionized self-assembled monolayer is weak and has little influence on the orientation and hydrogen bonding of the water molecules.