Monte Carlo simulation of a computed tomography x-ray tube

Abstract
The dose delivered to patients during computed tomography (CT) exams has increased in the past decade. With the increasing complexity of CT examinations, measurement of the dose becomes more difficult and more important. In some cases, the standard methods, such as measurement of the computed tomography dose index (CTDI), are currently under question. One approach to determine the dose from CT exams is to use Monte Carlo (MC) methods. Since the patient geometry can be included in the model, Monte Carlo simulations are potentially the most accurate method of determining the dose delivered to patients. In this work, we developed a MC model of a CT x-ray tube. The model was validated with half-value layer (HVL) measurements and spectral measurements with a high resolution Schottky CdTe spectrometer. First and second HVL for beams without additional filtration calculated from the MC modelled spectra and determined from attenuation measurements differ by less than 2.5%. The differences between the first and second HVL for both filtered and non-filtered beams calculated from the MC modelled spectra and spectral measurements with the CdTe detector were less than 1.8%. The MC modelled spectra match the directly measured spectra. This works presents a first step towards an accurate MC model of a CT scanner.