Targeted deletion of Atg5 in chondrocytes promotes age-related osteoarthritis

Abstract
Objectives It has been suggested that the lysosomal recycling process called macro-autophagy plays a role in osteoarthritis development. We thus decided to genetically ablate the autophagy-indispensable Atg5 gene specifically in chondrocytes and analyse the development of osteoarthritis upon aging and in a post-traumatic model. Methods Mice lacking the Atg5 gene in their chondrocytes (Atg5cKO) were generated by crossing Atg5-floxed mice with transgenic mice that expressed cre recombinase driven by the collagen type 2 promoter. Animals were analysed at the age of 2, 6 and 12 months for age-related osteoarthritis or underwent mini-open partial medial meniscectomy at 2 months of age and were analysed 1 or 2 months after surgery. We evaluated osteoarthritis using the Osteoarthritis Research Society International (OARSI) scoring on safranin-O-stained samples. Cell death was evaluated by terminal deoxy-nucleotidyl-transferase-mediated deoxy-UTP nick end labelling (TUNEL) and by immunostaining of cleaved caspases. Results We observed the development of osteoarthritis in Atg5cKO mice with aging including fibrillation and loss of proteoglycans, which was particularly severe in males. The ablation of Atg5 was associated with an increased cell death as assessed by TUNEL, cleaved caspase 3 and cleaved caspase 9. Surprisingly, no difference in the development of post-traumatic osteoarthritis was observed between Atg5cKO and control mice. Conclusions Autophagy protects from age-related osteoarthritis by facilitating chondrocyte survival.