Hybrid Data Hiding Scheme Using Right-Most Digit Replacement and Adaptive Least Significant Bit for Digital Images

Abstract
The goal of image steganographic methods considers three main key issues: high embedding capacity, good visual symmetry/quality, and security. In this paper, a hybrid data hiding method combining the right-most digit replacement (RMDR) with an adaptive least significant bit (ALSB) is proposed to provide not only high embedding capacity but also maintain a good visual symmetry. The cover-image is divided into lower texture (symmetry patterns) and higher texture (asymmetry patterns) areas and these textures determine the selection of RMDR and ALSB methods, respectively, according to pixel symmetry. This paper has three major contributions. First, the proposed hybrid method enhanced the embedding capacity due to efficient ALSB utilization in the higher texture areas of cover images. Second, the proposed hybrid method maintains the high visual quality because RMDR has the closest selection process to generate the symmetry between stego and cover pixels. Finally, the proposed hybrid method is secure against statistical regular or singular (RS) steganalysis and pixel difference histogram steganalysis because RMDR is capable of evading the risk of RS detection attacks due to pixel digits replacement instead of bits. Extensive experimental tests (over 1500+ cover images) are conducted with recent least significant bit (LSB)-based hybrid methods and it is demonstrated that the proposed hybrid method has a high embedding capacity (800,019 bits) while maintaining good visual symmetry (39.00% peak signal-to-noise ratio (PSNR)).