Regulation of cardiac cellular bioenergetics: mechanisms and consequences

Abstract
The regulation of cardiac cellular bioenergetics is critical for maintaining normal cell function, yet the nature of this regulation is not fully understood. Different mechanisms have been proposed to explain how mitochondrial ATP production is regulated to match changing cellular energy demand while metabolite concentrations are maintained. We have developed an integrated mathematical model of cardiac cellular bioenergetics, electrophysiology, and mechanics to test whether stimulation of the dehydrogenase flux by Ca2+ or Pi, or stimulation of complex III by Pi can increase the rate of mitochondrial ATP production above that determined by substrate availability (ADP and Pi). Using the model, we show that, under physiological conditions the rate of mitochondrial ATP production can match varying demand through substrate availability alone; that ATP production rate is not limited by the supply of reducing equivalents in the form of NADH, as a result of Ca2+ or Pi activation of the dehydrogenases; and that ATP production rate is sensitive to feedback activation of complex III by Pi. We then investigate the mechanistic implications on cytosolic ion homeostasis and force production by simulating the concentrations of cytosolic Ca2+, Na+ and K+, and activity of the key ATPases, SERCA pump, Na+/K+ pump and actin-myosin ATPase, in response to increasing cellular energy demand. We find that feedback regulation of mitochondrial complex III by Pi improves the coupling between energy demand and mitochondrial ATP production and stabilizes cytosolic ADP and Pi concentrations. This subsequently leads to stabilized cytosolic ionic concentrations and consequentially reduced energetic cost from cellular ATPases.
Funding Information
  • NIH (P50-GM094503)
  • Health Research Council of New Zealand (11/585)