Abstract
We have assessed the feasibility of studying urea metabolism in vivo in both steady state and nonsteady state situations by means of the primed constant infusion of di-15N-urea and the analysis of the resulting enrichment in plasma urea. Both hepatectomized dogs with known rates of urea infusion and intact dogs were studied. The enrichment of the bistrimethylsilyl derivative of urea was determined on a gas chromatograph-mass spectrometer. Selected ion monitoring was set for m/e 189 (M - 15), m/e 190 (A + 1), and m/e 191 (A + 2), thus enabling the calculation of the rate of urea production from nonrecycled NH3 (from A + 2 data) (Ra N), the rate of recycling of NH3 into urea (Ra R) (from A + 1 data), and thus the total rate of urea production (Ra N + Ra R). When urine collections were made, the incorporation of urea-N into protein was estimated from the difference between Ra N and urea excretion. We found that, in the steady state in a hepatectomized dog, the rate of appearance of urea can be determined accurately. In the nonsteady state in both hepatectomized and intact dogs, urea appearance could be estimated within +/- 20% in most situations. The only situation in which this was not the case was when we attempted to measure rapid changes in Ra R. Thus, within limits, this can be a useful technique enabling the quantitation of various aspects of urea metabolism.