Dimensioning a hybrid electrification system (PV / WT / DG + battery) using a dynamic simulation

Abstract
The aim of this paper is to demonstrate that a dynamic simulator, taking into account temporal data of renewable sources and using energy on one year, is able to sizing each element composing the electric generation system and the storage system. The electrical system includes photovoltaic panels (PV), a wind turbine (WT), a diesel generator (DG) and a storage battery. To illustrate the sizing capability of the dynamic simulator, we have fixed the surfaces of the PV and wind turbine as well as the battery. We are looking to obtain 100% supply by whole generation system. The study is limited to the power minimization of the diesel generator and to elaboration a strategy of starting and stopping the DG according to the SOC of the battery. I.e. with minimum power of DG, minimize the number of start-up and minimize the amount of excess energy. The simulation results for several sizing of DG illustrate the possibility to choose the power DG and the SOC thresholds of the battery to starting or stopping the DG.