Enhancement of Light-Energy Conversion Efficiency by Multi-Porphyrin Arrays of Porphyrin−Peptide Oligomers with Fullerene Clusters

Abstract
Organic photovoltaic cells using supramolecular complexes of porphyrin-peptide oligomers (porphyrin-functionalized alpha-polypeptides) with fullerene demonstrate remarkable enhancement in the photoelectrochemical performance as well as broader photoresponse in the visible and near-infrared regions by increasing the number of porphyrin units in alpha-polypeptide structures. A high power conversion efficiency (eta) of 1.3% and a maximum incident photon-to-photocurrent efficiency (IPCE) of 42% were attained using composite clusters of porphyrin-peptide octamer and fullerene. These results clearly show that the formation of a molecular assembly between fullerene and multi-porphyrin arrays with a polypeptide backbone controls the electron transfer efficiency in the supramolecular complex, which is essential for the light-energy conversion.

This publication has 36 references indexed in Scilit: