Power-Efficient Data Propagation Protocols for Wireless Sensor Networks

Abstract
Wireless sensor networks are composed of a vast number of ultra-small, fully autonomous computing, communication, and sensing devices, with very restricted energy and computing capabilities, that cooperate to accomplish a large sensing task. Such networks can be very useful in practice. The authors propose extended versions of two data propagation protocols: the Sleep-Awake Probabilistic Forwarding (SW-PFR) protocol and the Hierarchical Threshold-Sensitive Energy-Efficient Network (H-TEEN) protocol. These nontrivial extensions aim at improving the performance of the original protocols by introducing sleep-awake periods in the PFR case to save energy and introducing a hierarchy of clustering in the TEEN case to better cope with large network areas. The authors implemented the two protocols and performed an extensive comparison via simulation of various important measures of their performance with a focus on energy consumption. Data propagation under this approach exhibits high fault tolerance and increases network lifetime.

This publication has 6 references indexed in Scilit: