HIV-1 Populations in Semen Arise through Multiple Mechanisms

Abstract
HIV-1 is present in anatomical compartments and bodily fluids. Most transmissions occur through sexual acts, making virus in semen the proximal source in male donors. We find three distinct relationships in comparing viral RNA populations between blood and semen in men with chronic HIV-1 infection, and we propose that the viral populations in semen arise by multiple mechanisms including: direct import of virus, oligoclonal amplification within the seminal tract, or compartmentalization. In addition, we find significant enrichment of six out of nineteen cytokines and chemokines in semen of both HIV-infected and uninfected men, and another seven further enriched in infected individuals. The enrichment of cytokines involved in innate immunity in the seminal tract, complemented with chemokines in infected men, creates an environment conducive to T cell activation and viral replication. These studies define different relationships between virus in blood and semen that can significantly alter the composition of the viral population at the source that is most proximal to the transmitted virus. The work described in this report is directed at how HIV-1 viral RNA populations differ between the blood plasma and male genital tract in established infection. This site is of special interest since it is the proximal source of most transmissions of HIV-1. Thus, lessons learned about HIV-1 in the seminal tract are directly relevant to the mechanism of HIV-1 transmission. We have used single genome amplification to generate viral sequences from paired blood and semen samples in men with chronic HIV-1 infection. When compared to viral populations in blood plasma, we observe that virus in the seminal plasma can be equilibrated, clonally-amplified, or compartmentalized. We have also performed a characterization of the cytokine and chemokine milieu in these two compartments. We report a dramatic concentration of immune modulators in the seminal plasma relative to the blood, and these likely enhance the potential for viral replication in this compartment by creating an environment where target cells are kept in an activated state. These data define new and distinct features of virus:host interactions and represent a significant advance in our understanding of HIV-1 replication in the male genital tract.