Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries

Abstract
Electrochemically active LiMnPO4 nanoplates at lithiated/delithiated state were subjected to thermal stability and phase transformation evaluations for safety as a cathode material for Li-ion batteries. The phase transformation and oxygen evolution temperature of delithiated MnPO4 were characterized using in situ hot-stage X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric-differential scanning calorimetry-mass spectroscopy (TGA-DSC-MS), transmission electron microscopy and scanning electron microscopy (SEM)-energy dispersive X-ray analysis (EDAX).