A chemical model for urban plumes: Test for ozone and particulate sulfur formation in St. Louis urban plume

Abstract
A chemical model with anthropogenic sources of nitrogen oxides and hydrocarbons is applied to simulate the chemical behaviour of pollutants in the St. Louis urban plume. It is suggested that a substantial increase in peroxy radical concentrations (HO2,RO2) in the polluted air mass outside its source region leads to an effective formation of secondary pollutants like ozone and sulfate particles. The model indicates characteristic time for ozone generation in the plume of a few hours. Maximum ozone mixing ratio of 115 ppb is predicted after 4 h transport time outside the source region. Conversion rates of SO2 to H2SO4 through gas phase reactions with hydroxyl and peroxy radicals are estimated to be 1–5%h−1. This leads to an approx 25% conversion of SO2 to paniculate sulfur in the plume during the day. Agreement with measured ozone concentrations and flow rates of ozone and participate sulfur in the St. Louis plume on 18 July 1975 can be taken as strong indications that ozone and sulfate particle formation in the plume proceeds through the suggested mechanisms.