Abstract
Rates of net photosynthesis and dark respiration of 1-year-old and currently developing foliage were measured in the uppermost (i.e. 1-year-old) whorl of branches of 6-year-old balsam fir trees (Abies balsamea (L.) Mill.) during the period of extension growth of the current shoot. The rates were integrated to estimate net dry matter production by the two ages of foliage, and compared with dry matter requirements for growth of the new shoot (estimated from a regression equation of length over dry weight), and with cambial growth in the 1-year-old shoot (estimated from periodic harvests). The surplus of production over use in these two sinks was stored temporarily in the 1-year-old foliage or exported from the branch, the latter predominating. Two periods in which a large proportion of the photosynthetic production was exported (corresponding roughly to the months of May and July) were separated by a period when export was relatively low. At this intermediate time, current photosynthetic production was minimal and local growth demands were at their highest. Photosynthates stored in the 1-year-old foliage before budbreak supplemented current photosynthesis and permitted export to continue, except for a few days at the end of June. The contribution from stores in the old foliage, however, never exceeded one-third of current photosynthetic production. When extension growth terminated, a second transient storage peak occurred in the 1-year-old foliage for about 2 weeks. These observations explain the commonly observed reduction in root growth during current shoot extension, and corroborate results from studies made by other investigators using radioactive tracers.