Spatial characterisation of ryanodine-induced calcium release in mouse pancreatic acinar cells

Abstract
In pancreatic acinar cells, agonists evoke intracellular Ca2+ transients which are initiated in the apical region of these polarized cells. There are contradictory experimental data concerning Ca2+ release from ryanodine receptors (RyRs) in the apical region. In the present study, we have used low doses of ryanodine to open RyRs leading to the release of Ca2+ from intracellular stores. Ryanodine causes Ca2+ release that is initiated in the apical region of the cell but is dependent upon functional inositol 1,4,5-trisphosphate receptors (IP3Rs). These results suggests that co-ordinated release from co-localized RyRs and IP3Rs underlies the increased sensitivity of the apical region to initiation of intracellular Ca2+ transients.