Free-flight responses ofDrosophila melanogasterto attractive odors

Abstract
Many motile organisms localize the source of attractive odorants by following plumes upwind. In the case of D. melanogaster, little is known of how individuals alter their flight trajectories after encountering and losing a plume of an attractive odorant. We have characterized the three-dimensional flight behavior of D. melanogaster in a wind tunnel under a variety of odor conditions. In the absence of olfactory cues, hungry flies initiate flight and display anemotactic orientation. Following contact with a narrow ribbon plume of an attractive odor, flies reduce their crosswind velocity while flying faster upwind, resulting in a surge directed toward the odor source. Following loss of odor contact due to plume truncation, flies frequently initiate a stereotyped crosswind casting response, a behavior rarely observed in a continuous odor plume. Similarly, within a homogeneous odor cloud, flies move fast while maintaining an upwind heading. These results indicate both similarities and differences between the behavior of D. melanogaster and the responses of male moths to pheromone plumes, suggesting possible differences in underlying neural mechanisms.