Evidence for a high-density amorphous form in indomethacin from Raman scattering investigations

Abstract
Pressure-induced transformation of γ-IMC [1-(p-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetic acid] is analyzed from Raman scattering investigations in the low-frequency range of 10250cm1 and the high frequency region between 1550 and 1750cm1, where CO stretching vibrations are usually observed. At room temperature, by pressurization from atmospheric pressure up to 4GPa, γ-IMC undergoes a collapse transformation into a high-pressure crystalline form, induced by large rearrangement in the hydrogen-bonded network associated with molecular conformational changes. The Raman spectrum of the high-pressure crystal is similar to that of the α form, which is denser than the γ form and metastable with respect to γ-IMC at atmospheric pressure. Upon further compression a solid-state amorphization is observed via the breakdown of hydrogen bonds. The Raman line shape of the high-pressure amorphous form is different from that of the vitreous state (or thermal glass obtained by quenching the liquid), suggesting the existence of a high-density amorphous state. By release of pressure, this high-density amorphous state transforms into the thermal glass. This transformation can be interpreted as a transformation between a high-density amorphous to a low-density amorphous state, which could be associated with a polyamorphic transformation.