Abstract
Escape from cytotoxic T-lymphocyte (CTL) pressure is common in HIV-1 infection of humans and simian immunodeficiency virus (SIV) infections of macaques. CTL escape typically incurs a fitness cost as reversion back to wild-type can occur upon transmission. We utilized sequence-specific primers and DNA probes with real-time polymerase chain reaction (PCR) to sensitively and specifically track wild-type and escape mutant viremia at the Mane-A*17-restricted SIV Gag371–379 epitope AF9 in pigtail macaques. The generation of minor escape mutant populations is detected by the real-time PCR 2 weeks earlier than observed using standard sequencing techniques. We passaged the AF9 CTL escape mutant virus into two naïve Mane-A*17-negative pigtail macaques and showed that reversion to wild-type was rapid during acute infection and then slowed considerably at later stages of the infection. These data help refine our understanding of how CTL escape mutant viruses evolve.