Development and Characterization of Microfabricated Disposable Gold Working Electrodes for High-Performance Ion Chromatography and Integrated Pulsed Amperometric Detection

Abstract
We have developed a new type of microfabricated thin-film electrode on polymeric substrates. The microfabrication process allows for inexpensive and reproducible mass production of disposable working electrodes for high-performance ion chromatography and integrated pulsed amperometric detection (IPAD). These microfabricated electrodes are disposable and have been optimized for use in flow-through low-dead-volume electrochemical cells. The analytical performance of microfabricated gold electrodes was characterized with the help of the IPAD method for amino acid detection under alkaline conditions required for anion-exchange separations. When used with a new optimized six-potential IPAD waveform, the electrodes functioned properly for weeks. Compared to nondisposable working electrodes, the disposable working electrodes generated equal or better results in the limit of detection, linearity of calibration, and reproducibility. Disposable electrodes make it possible to avoid polishing and reconditioning, which are required with nondisposable electrodes.