Branch-Specific Sialylation of IgG-Fc Glycans by ST6Gal-I

Abstract
Sialylated forms of the Fc fragment of immunoglobulin G, produced by the human α2−6 sialyltransferase ST6Gal-I, were identified as potent anti-inflammatory mediators in a mouse model of rheumatoid arthritis and are potentially the active components in intravenous IgG anti-inflammatory therapies. The activities and specificities of hST6Gal-I are, however, poorly characterized. Here MS and NMR methodology demonstrates glycan modification occurs in a branch-specific manner with the α1−3Man branch of the complex, biantennary Fc glycan preferentially sialylated. Interestingly, this substrate preference is preserved when using a released glycan, suggesting that the apparent occlusion of glycan termini in Fc crystal structures does not dominate specificity.