Appraisal of the MedDRA Conceptual Structure for Describing and Grouping Adverse Drug Reactions

Abstract
Computerised queries in spontaneous reporting systems for pharmacovigilance require reliable and reproducible coding of adverse drug reactions (ADRs). The aim of the Medical Dictionary for Regulatory Activities (MedDRA) terminology is to provide an internationally approved classification for efficient communication of ADR data between countries. Several studies have evaluated the domain completeness of MedDRA and whether encoded terms are coherent with physicians’ original verbatim descriptions of the ADR. MedDRA terms are organised into five levels: system organ class (SOC), high level group terms (HLGTs), high level terms (HLTs), preferred terms (PTs) and low level terms (LLTs). Although terms may belong to different SOCs, no PT is related to more than one HLT within the same SOC. This hierarchical property ensures that terms cannot be counted twice in statistical studies, though it does not allow appropriate semantic grouping of PTs. For this purpose, special search categories (SSCs) [collections of PTs assembled from various SOCs] have been introduced in MedDRA to group terms with similar meanings. However, only a small number of categories are currently available and the criteria used to construct these categories have not been clarified. The objective of this work is to determine whether MedDRA contains the structural and terminological properties to group semantically linked adverse events in order to improve the performance of spontaneous reporting systems. Rossi Mori classifies terminological systems in three categories: first-generation systems, which represent terms as strings; second-generation systems, which dissect terminological phrases into a set of simpler terms; and third-generation systems, which provide advanced features to automatically retrieve the position of new terms in the classification and group sets of meaning-related terms. We applied Cimino’s desiderata to show that MedDRA is not compatible with the properties of third-generation systems. Consequently, no tool can help for the automated positioning of new terms inside the hierarchy and SSCs have to be entered manually rather than automatically using the MedDRA files. One solution could be to link MedDRA to a third-generation system. This would allow the current MedDRA structure to be kept to ensure that end users have a common view on the same data and the addition of new computational properties to MedDRA.