Cellular Proteins in Influenza Virus Particles

Abstract
Virions are thought to contain all the essential proteins that govern virus egress from the host cell and initiation of replication in the target cell. It has been known for some time that influenza virions contain nine viral proteins; however, analyses of other enveloped viruses have revealed that proteins from the host cell can also be detected in virions. To address whether the same is true for influenza virus, we used two complementary mass spectrometry approaches to perform a comprehensive proteomic analysis of purified influenza virus particles. In addition to the aforementioned nine virus-encoded proteins, we detected the presence of 36 host-encoded proteins. These include both cytoplasmic and membrane-bound proteins that can be grouped into several functional categories, such as cytoskeletal proteins, annexins, glycolytic enzymes, and tetraspanins. Interestingly, a significant number of these have also been reported to be present in virions of other virus families. Protease treatment of virions combined with immunoblot analysis was used to verify the presence of the cellular protein and also to determine whether it is located in the core of the influenza virus particle. Immunogold labeling confirmed the presence of membrane-bound host proteins on the influenza virus envelope. The identification of cellular constituents of influenza virions has important implications for understanding the interactions of influenza virus with its host and brings us a step closer to defining the cellular requirements for influenza virus replication. While not all of the host proteins are necessarily incorporated specifically, those that are and are found to have an essential role represent novel targets for antiviral drugs and for attenuation of viruses for vaccine purposes. Viruses are released from infected cells in the form of virions, which contain all the essential factors necessary for initiating infection in a new target cell. For influenza virus, it is known that virions contain the viral genome, a lipid envelope, and at least nine viral proteins. We performed a detailed proteomic analysis of purified influenza virus particles using mass spectrometry and database searching for protein identification, and in addition to the nine viral proteins, we identified 36 host proteins. These host proteins are present both inside the influenza virus particle and on the viral envelope. All viruses require host cell factors to complete their replication cycles, and they also have to contend with the antiviral defense mechanisms of the host. Virus–host interactions may therefore provide the key to understanding viral pathogenesis and may also present us with new targets for the design of antiviral drugs. For influenza virus, information on the requirement of cellular factors is limited, but the description of these 36 host proteins that are packaged into the virion provides a foundation for further analysis into the involvement of these cellular pathways in the influenza virus life cycle.