The anomalous skin effect

Abstract
The anomalous skin effect arises in good conductors at low temperatures and high frequencies when the electronic mean free path becomes comparable with or greater than the classically calculated skin depth. Measurements have been made on a number of metals at frequencies of 1200 and 3600 Mc/s, and the form of variation of r.f. surface conductance with d.c. conductivity agrees well with that predicted theoretically by Reuter & Sondheimer, assuming that the electrons are scattered diffusely when they hit the surface of the metal. From the results, estimates are made of the effective value of $\sigma $/l, the ratio of d.c. conductivity to mean free path, and hence of the free surface area of the occupied region of k-space. The estimate for copper agrees well with that expected theoretically; those for silver and gold are rather lower than the theoretical values. For the other metals investigated, tin, cadmium, lead and aluminium, no theoretical estimates are available. The results are very sensitive to the presence of surface imperfections; the effect of these is discussed.

This publication has 8 references indexed in Scilit: