Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia

Abstract
Based on genome-wide analysis of copy number variants in two large schizophrenia cohorts, Vacic et al. report a significant association between duplications within a region of chromosome 7 and schizophrenia. Using microduplication analysis, the region affected was narrowed down to 7q36.3, just upstream of a gene encoding vasoactive intestinal peptide receptor (VIPR2). Increased expression of VIPR2 in patients with schizophrenia implicates VIP signalling as a molecular mechanism underlying schizophrenia. This work points to the VIPR2 receptor as a potential target for antipsychotic drugs. Substantial risk for schizophrenia is conferred by large copy number variants at a number of genomic loci. Here, a significant association between duplications on chromosome 7 and schizophrenia is reported. Importantly, microduplication analysis narrowed down the region to a region just upstream of a gene encoding vasoactive intestinal peptide receptor (VIPR2). Increased expression of VIPR2 in patients with schizophrenia implicates VIP signalling as a molecular mechanism underlying schizophrenia. Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders1. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2–4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs.