Initial Experience of 3 Tesla Endorectal Coil Magnetic Resonance Imaging and 1H-Spectroscopic Imaging of the Prostate

Abstract
We sought to explore the feasibility of magnetic resonance imaging (MRI) of the prostate at 3T, with the knowledge of potential drawbacks of MRI at high field strengths. MRI, dynamic MRI, and 1H-MR spectroscopic imaging were performed in 10 patients with prostate cancer on 1.5T and 3T whole-body scanners. Comparable scan protocols were used, and additional high-resolution measurements at 3T were acquired. For both field strengths the signal-to-noise ratio was calculated and image quality was assessed. At 3T the signal-to-noise ratio improved. This resulted in increased spatial MRI resolution, which significantly improved anatomic detail. The increased spectral resolution improved the separation of individual resonances in MRSI. Contrast-enhanced time-concentration curves could be obtained with a doubled temporal resolution. Initial results of endorectal 3T 1H-MR spectroscopic imaging in prostate cancer patients showed potential advantages: the increase in spatial, temporal, and spectral resolution at higher field strength may result in an improved accuracy in delineating and staging prostate cancer.