The Significance of Changes in High Mobility Group-1 Protein mRNA Expression in Rats After Thermal Injury

Abstract
There has been a widespread impression that tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) mediate the toxicity of high doses of lipopolysaccharide (LPS, endotoxin) and are key factors in septic shock. However, the clinical efficacy of treatment with antagonists of TNF-α and IL-1β is still controversial, suggesting that mediators other than TNF-α and IL-1β might contribute causally to endotoxin-induced death. Recent studies implicated high mobility group-1 (HMG-1) protein as a late mediator of endotoxin lethality in mice. However, the role of HMG-1 in mediating multiple organ damage-associating trauma has not been studied. This study was designed to investigate changes in HMG-1 gene expression in vital organs, and its potential role in mediating multiple organ damage following major burns. Wistar rats were subjected to a 35 percent full-thickness thermal injury, and randomly divided into three groups as follows: normal controls (n = 7), thermal injury (n = 24), and recombinant bactericidal/permeability-increasing protein (rBPI21) treatment (n = 12). Tissue samples from liver and lungs were collected to measure tissue endotoxin levels and HMG-1 mRNA expression. In addition, blood samples were obtained for measurement of organ function parameters. Our data demonstrated a significant increase in HMG-1 gene expression in tissues at 24 h postburn, which remained markedly elevated up to 72 h after thermal injury (P < 0.05–0.01). Treatment with rBPI21 could significantly decrease tissue HMG-1 mRNA expression in the liver and lung (P < 0.01). In addition, there were high positive correlations between hepatic HMG-1 mRNA and serum aminoleucine transferase (ALT) and aspartate aminotransferase (AST) levels, and also between pulmonary HMG-1 mRNA and myeloperoxidase activities (P < 0.05–0.01). Taken together, these findings indicate that thermal injury per se can markedly enhance HMG-1 gene expression in various organs. Up-regulation of HMG-1 expression may be involved in the pathogenesis of endogenous endotoxin-mediated multiple organ damage secondary to major burns.

This publication has 23 references indexed in Scilit: