On the electrodetection threshold of aquatic vertebrates with ampullary or mucous gland electroreceptor organs

Abstract
Fish in the benthic space are exposed to stronger electric stimuli than fish in the pelagic space. Benthic fish scan the orientation plane for the maximum potential difference with their raster of electroreceptor organs, in order to locate bioelectric prey. This behaviour explains why the detection threshold does not depend on fish size. Pelagic marine fish are mainly exposed to electric fields caused by movements in the geomagnetic field. The straight orientation courses found in certain shark species might indicate that the electric sense functions as a simple bisensor system. Symmetrical stimulation of the sensory raster would provide an easy way to keep a straight course with respect to a far-field stimulus. The same neural mechanism would be effective in the location of a bioelectric prey generating a near-field stimulus. The response criteria in conditioning experiments and in experiments with spontaneous reactions are discussed.