Abstract
Measurements of the surface-height profile and the vertical distributions of velocity and total head were made behind a two-dimensional fully submerged hydrofoil moving horizontally at constant speed and angle of attack. These measurements were used to resolve the drag on the foil into two parts: one associated with the turbulent breaking region that is sometimes present on the forward face of the first wave, and the other associated with the remaining non-breaking wavetrain. It was found that at ‘incipient breaking’ the first wave existed in either a breaking or a non-breaking state depending on the starting procedures. It was possible to induce steady breaking when the wave slope was 17° or higher. The wake survey measurements showed that the drag associated with breaking reached more than three times the maximum drag that could theoretically be obtained with non-breaking waves. The drag associated with breaking was found to be proportional to the downslope component of the weight of the breaking region.

This publication has 11 references indexed in Scilit: