The Neutralization of Interferons by Antibody. I. Quantitative and Theoretical Analyses of the Neutralization Reaction in Different Bioassay Systems

Abstract
The highly specific ability of antibodies to inhibit the biologic activity of cytokines or other therapeutic proteins is widely used in research and a subject of increasing clinical importance. The need exists for a standardized approach to the reporting of neutralizing antibody potency soundly based on theoretical and practical considerations and tested by experimental data. Pursuant to the original studies of Kawade on the theoretical and functional aspects of neutralization of interferons (IFN), experimental data were obtained by different laboratories employing varied methodology to address two hypotheses concerning the nature of IFN neutralization reactions, based on a derived formula that allows expression of neutralizing power as the reduction of 10 laboratory units (LU)/ml to 1 LU/ml, the end point of most bioassays. Two hypotheses are posed: (1) antibody acts to neutralize a fixed amount of biologically active IFN molecules, or (2) antibody reduces IFN activity in a set ratio of added/residual biologically active IFN. The first, or fixed amount, hypothesis relates to the reactivity of high-affinity antibodies neutralizing equimolar amounts of antigen, whereas the second, or constant proportion, hypothesis postulates a reduction in the ratio of total added IFN to residual active IFN molecules, such as a low-affinity antibody might exhibit. Analyses of data of the neutralization of IFN-α and IFN-β are presented, employing human polyclonal antibodies and murine monoclonal antibodies (mAb). The theoretical constructs of Kawade are extended in the Appendix and correlated with new experimental data in the text. The data clearly indicate that the low-antibody affinity, constant proportion hypothesis, rather than the high-antibody affinity, fixed amount hypothesis, is applicable, if the bioassay is sensitive to IFN. The findings presented here and in the following paper (pp. 743-755, this issue) taken together provide the basis for a standardized method of expression of neutralizing potency and substantiate the earlier operational 10/1 LU/ml approach recommended by the World Health Organization. The accompanying paper relates neutralization results to the sensitivity of the bioassay to IFN and describes the rationale for a recommended unit of antibody neutralization.