Association between Common Variation at the FTO Locus and Changes in Body Mass Index from Infancy to Late Childhood: The Complex Nature of Genetic Association through Growth and Development

Abstract
An age-dependent association between variation at the FTO locus and BMI in children has been suggested. We meta-analyzed associations between the FTO locus (rs9939609) and BMI in samples, aged from early infancy to 13 years, from 8 cohorts of European ancestry. We found a positive association between additional minor (A) alleles and BMI from 5.5 years onwards, but an inverse association below age 2.5 years. Modelling median BMI curves for each genotype using the LMS method, we found that carriers of minor alleles showed lower BMI in infancy, earlier adiposity rebound (AR), and higher BMI later in childhood. Differences by allele were consistent with two independent processes: earlier AR equivalent to accelerating developmental age by 2.37% (95% CI 1.87, 2.87, p = 10−20) per A allele and a positive age by genotype interaction such that BMI increased faster with age (p = 10−23). We also fitted a linear mixed effects model to relate genotype to the BMI curve inflection points adiposity peak (AP) in infancy and AR. Carriage of two minor alleles at rs9939609 was associated with lower BMI at AP (−0.40% (95% CI: −0.74, −0.06), p = 0.02), higher BMI at AR (0.93% (95% CI: 0.22, 1.64), p = 0.01), and earlier AR (−4.72% (−5.81, −3.63), p = 10−17), supporting cross-sectional results. Overall, we confirm the expected association between variation at rs9939609 and BMI in childhood, but only after an inverse association between the same variant and BMI in infancy. Patterns are consistent with a shift on the developmental scale, which is reflected in association with the timing of AR rather than just a global increase in BMI. Results provide important information about longitudinal gene effects and about the role of FTO in adiposity. The associated shifts in developmental timing have clinical importance with respect to known relationships between AR and both later-life BMI and metabolic disease risk. Variation at the FTO locus is reliably associated with BMI and adiposity-related traits, but little is still known about the effects of variation at this gene, particularly in children. We have examined a large collection of samples for which both genotypes at rs9939609 and multiple measurements of BMI are available. We observe a positive association between the minor allele (A) at rs9939609 and BMI emerging in childhood that has the characteristics of a shift in the age scale leading simultaneously to lower BMI during infancy and higher BMI in childhood. Assessed in cross section and longitudinally, we find evidence of variation at rs9939609 being associated with the timing of AR and the concert of events expected with such a change to the BMI curve. Importantly, the apparently negative association between the minor allele (A) and BMI in early life, which is then followed by an earlier AR and greater BMI in childhood, is a pattern known to be associated with both the risk of adult BMI and metabolic disorders such as type 2 diabetes (T2D). These findings are important in our understanding of the contribution of FTO to adiposity, but also in light of efforts to appreciate genetic effects in a lifecourse context.