Design of Stable Nanocrystalline Alloys

Abstract
Metal Manipulation: Reducing the grain size below 100 micrometers can vastly improve the properties of a metal. However, these nanocrystalline metals are not thermally stable; at elevated temperatures the grains will grow and merge. Alloying with a second metal to slow grain growth can slow down this process, which has shown some success on a trial-and-error basis. Chookajorn et al. (p. 951 ; see the Perspective by Weertman ) now provide a theoretical framework to create stability maps to identify potential alloys with the greatest thermal stability. For tungsten, counterintuitively, the theory suggests that atoms with the largest size differential or lowest solubility are not the best alloying choice. Indeed, an alloy of tungsten and titanium was processed more easily than pure nanocrystalline tungsten and also showed better stability at high temperatures.