A Power Analysis of Microsatellite-Based Statistics for Inferring Past Population Growth

Abstract
We present results concerning the power to detect past population growth using three microsatellite-based statistics available in the current literature: (1) that based on between-locus variability, (2) that based on the shape of allele size distribution, and (3) that based on the imbalance between variance and heterozygosity at a locus. The analysis is based on the single-step stepwise mutation model. The power of the statistics is evaluated for constant, as well as variable, mutation rates across loci. The latter case is important, since it is a standard procedure to pool data collected at a number of loci, and mutation rates at microsatellite loci are known to be different. Our analysis indicates that the statistic based on the imbalance between allele size variance and heterozygosity at a locus has the highest power for detection of population growth, particularly when mutation rates vary across loci.