Accurate Synapse Regeneration Despite Ablation of the Distal Axon Segment

Abstract
In each body ganglion of the leech Hirudo medicinalis there is a single S-cell. After an S-cell axon is severed, it regenerates along its surviving distal segment and reconnects with its synaptic target, the axon of the neighbouring S-cell. In approximately half the cases the regenerating axon forms a temporary electrical synapse specifically with the distal segment, which remains active and connected to the target, thereby functioning as a splice until regeneration is complete. To determine whether the distal axon segment is required for successful regeneration, distal segments of severed S-cell axons were ablated by intracellular injection of bacterial protease. Fifty-seven preparations were examined from 2 to 212 days after injection of the axon segment. The extent of S-cell axon regeneration was assessed electrophysiologically by intracellular and extracellular recording, and anatomically by intracellular injection of markers followed by light microscopy and electron microscopy. The S-cell axons regenerated successfully in almost 90% of animals examined after 2 weeks or more. In a further four animals the target S-cell was ablated in addition to the distal axon segment, permanently disrupting conduction along the S-cell pathway. Nevertheless, the regenerating axon grew along its usual pathway and there was no evidence that alternative connections were formed. It is concluded that, although the distal axon segment can provide a means for rapid functional repair, the segment is not required for reliable regeneration of the axon along its usual pathway and accurate formation of an electrical synapse.