Abstract
Although they were used initially as non-specific immunosuppressants in transplantation, CD3-specific monoclonal antibodies have elicited renewed interest owing to their capacity to induce immune tolerance. In mouse models of autoimmune diabetes, CD3-specific antibodies induce stable disease remission by restoring tolerance to pancreatic beta-cells. This phenomenon was extended recently to the clinic--preservation of beta-cell function in recently diagnosed patients with diabetes was achieved by short-term administration of a CD3-specific antibody. CD3-specific antibodies arrest ongoing disease by rapidly clearing pathogenic T cells from the target. Subsequently, they promote long-term T-cell-mediated active tolerance. Recent data indicate that transforming growth factor-beta-dependent CD4+CD25+ regulatory T cells might have a central role in this effect.